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A new approach to contaminant diffusion in homogeneous turbulence is proposed. 
This approach is based on solving for the Lagrangian trajectories of many particles 
taking into account the interaction among their velocities. The velocity field at a 
given instant is composed of many ‘eddies’ distributed randomly and uniformly in 
space. The velocity of each eddy is proportional to the cube root of its size. In  this 
way the calculated Eulerian correlation function between any two points is 
consistent with observations. The present model is used to calculate concentration 
fluctuations, concentration averages and intermittency as functions of location and 
time. Results were found to be in accordance with experimental measurements. 
Probability distributions as functions of time and location are also calculated. 

1. Introduction 
The need for methods of predicting concentration-fluctuation statistics has grown 

in the last few years. This is because fluctuations about the mean are of the same 
order of magnitude as the mean itself and therefore cannot be neglected. A method 
for estimating these fluctuations can be helpful in many fields. For example, in air- 
quality models, it enables us to predict the frequency with which a given 
concentration level may be exceeded. Similarly, the probability of visibility through 
a smoke screen can be predicted. Flammability of a gas cloud and reaction rates 
depend on concentration covariance. Hazard estimation of toxic gases depends 
strongly on the short-term concentration levels. In addition, any method that treats 
contaminants as passive scalars in the turbulent field can also be applied to 
temperature fluctuations. 

There are several models available for calculating the second moment of 
concentration fluctuations. Some are based on the Eulerian approach, i.e. gradient- 
transfer approximation or second-order closure to the diffusion equation (see, for 
example, Csanady 1967 ; Sykes, Lewellen & Parker 1984). Other models include that 
based on calculating particle trajectories in a simulated Eulerian field, e.g. 
Kraichnan (1970); that  based on the similarity approach (see Chatwin & Sullivan 
1982) ; and the Lagrangian model using assumptions concerning the Lagrangian 
velocity statistics (for example, see Durbin 1980; Lee & Stone 1983; Sawford 1985). 
The main restriction on the gradient-transfer approach is that the lengthscale of the 
mean field must be larger than that of the turbulence. This restriction is not always 
satisfied. In the Lagrangian approach assumptions are made about Lagrangian 
statistics which cannot be measured directly. There arc two main approaches to 
the problem based on different assumptions about the two-particle displacement 
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probability functions. The first approach (Sawford 1985; Lee & Gtonc 1983) is based 
on the assumption that the instantaneous rate of separation is a function of the 
ensemble-mean-square pair separation (Batchelor 1952). The other approach is due 
to Richardson (Richardson 1926; Durbin 1980), in which the instantaneous rate of 
separation of a pair of particles is a function of the instantaneous separation of this 
pair. Durbin’s model rcproduces the essential features of field and laboratory 
experiments (see Fackrell & Robins 1982; Hanna 1984). Therefore, it seems that the 
Lagrangian-statistics assumptions of Durbin’s model are more physically meaningful. 

In this work, we suggest a new approach to the diffusion problem. The model is 
based on thc calculation of Lagrangian trajectories for N ,  particles, where N ,  is 
large. The trajectory of each particle is obtained by solving a system of Langevin- 
type equations, but velocities of particles are correlated in space, i.e. the white noise 
in the equations is spatially correlated. This correlation is assumed to be the same as 
that between the Eulerian velocities at the particle locations. 

The field describing the white noise for velocities is composed of many eddies 
located randomly and uniformly in space and with random sizes and velocities. A 
similar description of the structure of a turbulent field is given by Townsend 
(1976). 

N ,  realizations of trajectories for N ,  particles are calculated in the present 
approach, which enables us to estimate the entire distribution of the concentration 
field and not only the first and second moments. Our model is also capable of 
predicting other statistical quantities that  cannot be predicted by two-particle 
statistics, like the intermittency - the fraction of non-zero concentration at a given 
point. 

These predictions are compared to the measurement of smoke plumes described by 
Hanna (1984), and to other two-particle-statistics models. 

2. Description of the model 
As mentioned above, we suggest a Lagrangian model of the common motion of 

many particles in the turbulent field. First we assume that the particles move 
passively in the turbulent field. At t = 0 each particle has the velocity of the field at 
its location, therefore the particle velocities must have the same covariance as the 
Eulerian field. The second assumption is that  the evolution of the velocities of the 
particles is described by Lagrangian one-particle statistics : 

(2.1) 
where R, is the Lagrangian autocorrelation function and 0 is a random velocity field 
with the same covariance as the Eulerian field. First we shall describe how to 
construct such a random field, then we shall consider the time evolution. 

V(t  + At) = R, V ( t )  + 0, 

2.1. The instantaneous turbulent Jield 

In this subsection, we describe the construction of a turbulent field which is 
constrained to fulfil Eulerian correlations in space. This field is based on the 
description of the turbulent field as a superposition of randomly distributed eddies 
with random sizes and random energies (see Townsend 1976). 

We shall define an ‘eddy’ of the turbulent motion as a flow pattern with a spatially 
limited distribution of vorticity. Such an eddy can be defined by its velocity 
distribution 0, as a function of r relative to its centre: 

0, = A ,  @(ar), (2.2) 
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where @(ar) + 0 for a (r/ -f co. In the present work, we deal with the one-dimensional 
case and therefore @ is a function of a 2  only, where Z is the one-dimensional 
coordinate, A,  is the velocity amplitude and l / a  is the eddy size. Typical turbulent 
flows are composed of eddies with a wide range of sizes. The important quantity that 
we need to describe the turbulent motion is the energy distribution over the range 
of eddy sizes. This distribution depends on the parameters that characterize the 
turbulent flow. These parameters are: E ,  the energy flux that passes from larger to 
smaller eddies, and p,  the field density. We assume that the eddy sizes with which we 
are concerned are much larger than the distance A, a t  which fluid viscosity begins to 
be important, and much smaller than L,  a characteristic length for the variation of 
the mean velocity. We shall denote by V ( a )  the turbulent velocity variation over 
distance l/a. V ( a )  is determined only by E ,  p,  and 1/a and the only quantity with 
dimensions of velocity that can be formed from these three parameters is (./pa)' (see 
Landau & Lifshitz 1963, p. 121). Therefore, in the range 1/L < 01 < l / A ,  the function 
that describes an eddy of size l/a centred a t  the origin is 

(2.3) 

where B is a dimensionless scalar parameter of order 1.  Let us assume that we have 
a domain which contains eddies of uniform size l / a .  If the turbulence is homogeneous, 
in the sense that it contains these eddies with their centres distributed randomly, but 
statistically uniformly in space, the covariance of the velocity a t  two different points 
Z,, 2, is given by 

where the integration is over all turbulent space A .  It can be shown that the integral 
in (2.4) is a function of aJAZ) divided by a, where AZ = Z,-Z, (see Appendix A). 

Therefore 

(@(Z,) @(Z,) )  = R2 - - F ( a  IAZl). (;J: 
For a turbulent domain that contains eddies of different sizes in the range (A,, L) ,  the 
covariance is given by integrating (2.5) over all a in that range: 

For IAZl/L + 1 the integral in this formula tends to zero and therefore the 
correlation between two velocities tends to zero. For lAZl-h,, F(t) can be 
approximated by the first two terms of Taylor's expansion, C, -C, t where C,, C,, 
are constants independent of a and AZ. Therefore, the integral in (2.6) is given by 
C,-C, IAZl; where C,, C, are constants. From this dependence it can be inferred that 
the relative velocity between the two points tends to zero like IAZJ;. The relative 
velocity dependence on JAZI is because the main contribution to the velocity 
difference between two points separated by a distance of lAZl is from eddies of size 
JAZI. Eddies of smaller scale will not affect the velocity difference, while eddies of 
scale much larger than IAZI contribute very little to the velocity difference. As the 

5 FLAI lD(I 
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FIGURE 1. Eulerian correlation function I< as afunetion ofAZ/L. -, equation (2.8); 0, according 
to Durbin’s (1980) model. The lengthscale of both functions is 0 2L. 

velocity of eddies of size (AZ( behaves like (AZ(b, the contribution to the velocity 
difference between two points has the same behaviour. 

These consequences do not depend on the specific choice of the function @(aZ)  (see 
( 2 . 2 ) ) .  For simplicity, we have chosen @ to be a stepfunction that can be either 
positive or negative with equal probability : 

I sgn(w-O.Ti), IZJ < l / a ,  

otherwise, 
@(aZ) = (2.7) 

where w is a random variable, uniformly distributed in the interval ( 0 , l ) .  

(2.7), as wcll as t,he variance. The correlation function is given by 
In  Appendix B, we calculate the correlation function & ( A )  for @(aZ) defined in 

1-3 ( A Z / L ( i + 2  IAZ(/L, lAZ/L( < &(A%) = I0, 
otherwise. 

A graphical representation of R is given in figure 1. 
Given this description for the turbulent field, one can construct the velocity field 

a t  a given instant as follows. We define a vector in the Z-space. We draw a random 
number, (, from a uniform distribution over range T,T  9 L. We draw a random 
number a from a uniform distribution between 2 / L  and l/&. These two 
random numbcrs describe an eddy centred at 6 with size 1/a and velocity 
proportional to a-:. Then we add the quantity a-4 to the velocities of all points Z that  
arc affected by this eddy (lZ-61 < l / a ) .  We repeat this procedure N ,  times. The 
velocity at a given point Z is given by 

(2.9) 
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FIGURE 2. A single realization of the fluctuation velocity field at a given time. 

The constant I? is determined by comparing the calculated variance of the velocity 
field to a given or measured variance crt. This yields 

crV(T/3N,)i H =  
( L e / p ) i  

(2.10) 

(see Appendix B). A single realization of thc fluctuation velocity field at  a given timc 
is shown in figure 2 .  

2 .2 .  Time- Lagrangian autocorrelation function 

We assume that the Lagrangian autocorrelation function for the common motion of 
the ATy particles is given by an exponential function with integral timescale TL: 

-At 
R L ( A t )  = exp ( F). (2.1 1) 

This function represents the influence on the particle’s velocity of the dynamics of 
the eddies, and the motion of the particles themselves. Changes in flow patterns 
affecting the correlation can arise either by displacement of any individual eddy, or 
by a change in the patterns themselves. Three mechanisms can affect the correlation. 

( a )  advection of an eddy centre by the mean velocity field; 
( b )  advection of an cddy centre by the local velocity caused by larger eddies; 
( c )  decay of an eddy amplitude. 
Since we use a coordinate system that moves with the mean wind velocity, the first 

mechanism will not affect thc diffusion of the (aloud. On the other hand, this 
mechanism will be dominant in affecting the Eulerian spectra of the velocity field (see 
3 3 ) .  The second mechanism is the dominant one affecting the correlation. The order 
of magnitude of the timescale of this mechanism is L,Jcrv, where I,, is the Eulerian 
lengthscale of the velocity ficld and cr, is the standard dcviation of the wind velocity 

i? 
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a t  a given point. The contribution of the third mechanism is minor (see Townsend 
1967, p. 63). In  this work we choose 

L ,  
TL = 0.6- 

g, 
(2.12) 

This value has also been used in other works (e.g. Sawford 1983; Durbin 1980). 
We assume that the random part of the particles velocities (0 in 2.1) results from 

the particles meeting a new set of eddies. Therefore the covariance of the @-field is 
the same as that of the Eulerian field. We would like to emphasize that this is an 
assumption of the model and, like other assumptions on Lagrangian statistics, 
cannot be examined directly. 

3. Relationship between the Lagrangian timescale and the Eulerian 
timescale 

I t  is shown in Appendix D, that the Eulerian lengthscale of the velocity field is 
L,  = 0.2L. As vv + U ,  where U is the mean velocity field, the dominant mechanism 
of destroying the correlation a t  a fixed point and a t  a fixed coordinate system is the 
advection of eddy centres by the mean velocity field. Therefore, the Eulerian 
timescale T,, typical for the time autocorrelation function a t  a fixed point, is given 

Using (2.12) and (3.1) one finds the relation between Eulerian and Lagrangian 
timescales : 

This value is close to the experimental value in Hanna (1981). 

4. Motion of particles in the velocity field 

motion of a particle. Let us denote by 0 ( Z )  a random velocity field that, fulfils 
Given the Lagrangian correlation function &,(At),  one can write the equation of 

( 0 2 ( Z ) )  = cr; for any Z 

and ( 0 ( Z , )  O(2,)) = a~(R(lZ,-Z,l) for any Z,,Z,. 

The construction of 0 ( Z )  is described in $ 2  (see (2.9)). The Lagrangian velocity of a 
particle in this field is given by 

V(Z( t+At ) )  = & ( A t )  V ( Z ( t ) )  + [l -RL(At)]i @(Z). (4.1) 

O(2)  is a random field with given spatial correlation and is recompted at  each time 
step independently of the previous step. It is a sum of many independent random 
variables, therefore i t  follows from the central-limit theorem that it is normally 
distributed with variance u;. Then the motion of one particle is an Chlenbeck- 
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Ornstein process and the probability that the particle is located a t  point Z after time 
t ,  given that its location at  time t = 0 is Z,, is (see Wax 1954): 

exp [ - (2 - Z,)z /2ai ( t ) ]  
(217) + crz ( t ) 

= , 

crZ(t) = 2/2a,TL 

With a source described by a distribution of particles S(Z’), the average 
concentration is given by 

C(2) = S(Z’) P,(Z -2’) dZ’. (4.4) s 
This formula is consistent with the other Lagrangian-statistics-model estimation of 
C (see Sawford 1983). The innovation in (4.1) is the ability to describe the interaction 
of Xp particles and their common motion in the turbulent field. This common motion 
is described by a system of N ,  coupled equations defined by 

(4.5) -- dZi - V(Z , ( t ) ,  t ) ,  i = 1, ..., N , ,  
dt 

where V(Z , ( t ) , t )  is given by (4.1). 
For example, the equation for the relative velocity of a pair of particles is 

Vr(t + At) = V(Z l ( t  + At) )  - V ( Z z ( t +  At)) 

= RL(At )  V,(t)+ ( l - R ~ ( A t ) ) f [ O ( Z l ( t + A t ) ) - O ( Z 2 ( t + A t ) ) ] .  (4.6) 

As we have shown in Appendix C, O(Z,(t+ At) - O(Z,(t + At ) )  is a random variable 
normally distributed with variance that depends on the instantaneous separation of 
the particle pair. The variance a2 is given by 

az = 4 2 [ 1  -&(Z2( t ) -Z1( t ) ) ] .  (4.7) 

In a similar way, the equation for the centre-of-mass velocity of the particle pair is 

V,(t+At) = $[V(Z, ( t+At) )+ V(Z, ( t+At) )]  

= ${R,(At) VC(t)  + (1  -R i (A t ) )$  [@(Z1(t  +At ) )  + O(Z,(t + At) )]} .  (4.8) 

The sum @(Z,(t + At ) )  + @(Z,(t +At ) )  is a random variable with variance 2n;[l+ 
K(Z,(t  + At) - Z,(t + At ) ) ] .  We see from this equation that the motion of the centre 
of mass of the particle pair depends on the instantaneous separation of the 
particles. 

5. The role of molecular diffusion and instrument smoothing 
The diffusion process described in 8 4, poses some puzzles concerning the connection 

bctwecn particle diffusion and contaminant diffusion. It must be emphasized here 
that by a ‘particle‘ we mean a fluid particle, which is larger than the intermolecular 
distance but small compared with the variation of velocity scales (much smaller than 
the smallest eddy dimension A,,). As the fluid is incompressible. the volume of each 
fluid particle is constant and in the absence of molecular diffusion, the quantity of 
contaminant within such a particle is conserved. Therefore, any fluid particle will 
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carry with it the initial concentration of contaminant. The diffusion process 
described will separate the particlcs from each other, but will not mix the 
cwntaminant that is within them. In such a process, only two discrete values for the 
concentration are possible at each point ; either the initial concentration G, or zero. 
Thc probability of obtaining the value C‘, will decrease with time, as the particles are 
displaced one from the other. 

This peturc is not a physical one and contradicts the experimental evidence. 
If we examine the process described in 54, we can see that two particles will move 

togcthclr forcver, oncc the distance bctwccn them is smaller than A,. This occurs sincc 
the particles can be separated only by eddies of the order of magnitude of the 
distanw between thcm, but the vclocity field as defined in $ 2  includes only eddies 
grclattr than A,. If the initial source is w r y  small, the chancc that two particles 
coinc.ide is greater and therefore the cloud will not diffuse. In fact, we know that this 
procms does not occur in nature, bccause a t  scales of the order of the small-eddy size, 
molecular diffusion owurs. 

In order to solve this problem, we must treat ‘particles’ not as fluid particles, but 
as cwntaminant particslcs. The vclocity of any contaminant particle will be the 
superposition of thc ‘ fluid-particle’ velocity which carries it (see (4.1)) and the 
molccdar diffusion velocity. In our  process, we include the molecular diffusion 
vclocity as a random variable derived from a normal distribution with zero mean, 
and variancc rm cqual to the velocity of the smallest eddies. This formalism prevents 
two particlcs from collapsing and moving together permanently, even if they meet 
I n  addition, two particles that are at thc same point within the source can arrivc at 
diffcrcnt points after time t .  This fact emphasizes the difference between our 
proccw - following contaminant trajectories - and Durbin’s process (Durbin 1980) ~ 

following the ‘fiuid-particle’ trajcctory. It also enables us to include the case of small 
sourws of order A, 111 our formalism. 

The smearing of contaminant by molecular diffusion is not rapid in comparison 
with turbulent diffusion, which separates the particles from each other. Therefore, 
any particlc hill carry with it the concentration that is approximately equal to its 
initial conccntration. 

Anothw smoothing proec~ss is due to the experimental Instruments. Any 
instrument will averagc conccntration over several fluid particles. The averaging 
scale of thc instrument is large compared to fluid-particle size, but small compared 
to thc turbulence scale. ‘I’hcrefore, in order to calculate concentration at point Z a t  
tirnc t .  we sum over all contaminant particlcs that  arrive a t  a neighbourhood of size 
iLu around %. This smoothing is similar to that suggested by Ihrbin (1980), and 
therefore wc adopted his definition of the instantaneous concentration. 

(5.1) 

whcrc VA0 i s  a region of order of thc Kolmogorov scale A,. 
Molecular diffusion is included in our model in order (i) to prevent particles whose 

distancc is smaller than A, from moving together ; and (ii)  t o  include sourccs of order 
A,.  We do not intend that this model should describe fluctuations caused by the 
dynamic of the fluid in the suhincrtial rangc (see for example Sawford & Hunt 1985), 
and thereforc our results are not sensitive to the exact valuc of gm. 
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6. Numerical methods 
6.1. Particle trajectories 

Particle trajectories are calculated by solving a finite-difference representation of the 
processes described in $34 and 5. The set of equations is defined by 

Z,(t+At) = Z,( t )+At[V(Z, ( t ) , t )+ V,(t)], i = 1, ..., N , ,  (6.1) 

V(Z, ( t+At) , t )  = RL(At)  V (Z t ( t ) , t )+[ l - -R2 , (6 t ) ]~@(Z , ( t ) )  for i = 1,  ..., N , ,  (6.2) 

where N ,  represents the number of particles. Since we deal here with an instantaneous 
source, all the particles are released at time t = 0. The initial locations Z,(0),  i = 1 ,  
..., N , ,  are determined by the material distribution of the source. For an 
instantaneous point source located at the origin, we get 

Z i ( 0 )  = 0, i = 1 , ..., N, .  (6.3) 

RL(At)  in (6.2) is defined here by 

(see the discussion in $2.2) .  
The initial conditions for V(Z i ( t ) ,  t )  are given by 

V(Z i (0 ) ,  0) = @(Zi(0)). (6.5) 

@(Zi( t ) )  in (6.2) and (6.5) are random velocity fields whose construction is described 
in $ 2 (see (2.9)). The parameters involved in the calculation of the random velocity 
field include : a;, the variance of the field ; A,, the smallest eddy size: L,  the largest 
eddy size : N , ,  the total number of eddies ; TL, Lagrangian timescale. Typical values 
for these parameters are given in 5 6.1. Jk(t) in (6.1) represents molecular diffusion as 
described in $5. It is a random variable, normally distributed, with zero mean and 
variance given by CT;. 

6.2. Calculation of the concentration field 

The concentration is estimated by defining a mesh with mesh size AZ. and by 
counting the fraction of particles confined in the interval ( jAZ , jAZ+ AZ) .  for 
I jl < 31, and M large enough to contain all the particles. A 2  should be much smaller 
than the size of the large eddies but still large enough to contain enough particles 
that  calculation of concentration is meaningful. Typical values are given below. 

6.3. Monte Carlo simulation 
The calculations described in $36.1 and 6.3 represent a single realization of the 
process. In  order to estimate the statistics described in $ 7  we need to repeat the 
process N ,  times. 

6.4. Typical values of the parameters 
I n  order to determine the values of the parameters needed in the process, we 
performed an extensive sensitivity study, particularly for the velocity field, and the 
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At = 0.05TL (s), 
L = 1 (m), 
TL = O.6LE/cr, = O.l2L/r ,  (s), 
crt, = 0.4 (m/s), 
A,, = 1.4 x lop4 (m), 
N ,  (number of eddies) = 7000, 
N ,  (number of particles) = 1000, 
N ,  (number of realizations) = 250. 

The number of eddies N ,  was chosen by checking the covariance of the random field 
0 (see (2.7)). The calculated covariance was compared to the theoretical one (see 
Appendix B (B 3)) for different values of 2, and Z , .  It was found that for N ,  > 5000 
the simulated correlation fitted the theoretical one well. 

The number of particles N ,  was chosen so that for t < 2.5TL, there would be a t  least 
10 particles in a cell for each realization. N ,  selected in this way may result in low 
accuracy for t > 2.5TL at the edges of the cloud. The number of realizations N ,  was 
selected so that convergence of the results would be satisfactory. 

7. Results 
7.1. The Jluctucxtion shtistics 

The diffusion process described in 94.5 is designed for any initial source shape. 
Analysis was done for a line source that is described by 

Three statistical quantities were calculated : the average concentration, the 
fluctuation intensities and the intermittency ~ the fraction of non-zero concentration 
at a point. All these quantities were calculated for selected times as functions of 
cross-wind distance from the source. Results are shown in figure 3. We see that the 
average concentration has a Gaussian-shape distribution with standard deviation 
corresponding to the theoretical estimation : 

In  figure 4 the calculated value of rz is compared with the theoretical value. The 
good agreement shows that the one-particle diffusion process described by (4.1) is 
equivalent to an Orenstein-Uhlenbeck process. 

The fluctuation intensity increases with cross-wind distance from the source. This 
behaviour is also described by Durbin's (1980) theoretical estimates, and has been 
found in many experiments (see, for example, Hanna 1984 : Ramsdell & Hinds 1971 ; 
Fackrell & Robins 1982). 

The third statistical quantity that is represented in figure 3 is the intermittency 
(the fraction of non-zero concentration at a given point). As can be seen, the 
intermittency decreases with cross-wind distance from the source. This is also in 
quantitative accordance with experimental results (Hanna 1984 ; Jones 1983). 

In  figure 5 ,  the time dependence of the averaged concentration at the source line is 
shown. This dependence is compared with that of the theoretical formula 

c = 1/[(2n)bz(t)]. (7.3) 
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FIGURE 3. Statistical quantities as functions of a cross-wind distance a t  t = 3TL for a line source 
with 1 = 4 x 10-4L : (a) average concentration normalized by total amount of contaminant ; ( b )  
fluctuation intensity S = a,/C; (c) intermittency. The cross-wind distance is normalized by uz 
(equation (4.3)). 

In  figure 6 ( a ,  b)  the time dependence of the intermittency and fluctuation 
intensity on the plume axis, Z = 0, are presented. During the first stage, we see that 
the intermittency decreases with time and then increases. The decrease in time is 
because, at  the beginning, the diffusion is affected by eddies of the same order of 
magnitude as the cloud size. Since these eddies contain only a small part of the 
turbulent energy, most of the energy is used for the motion of the cloud as a whole. 
As a result, most of the time the cloud is absent from the detector and intermittency 
decreases. Later, when the cloud expands, increasingly larger eddies affect the 
diffusion process and most of the energy is invested in fluctuations inside the cloud, 
therefore intermittency of the plume axis increases. 

This behaviour of the intermittency also affects the behaviour of the fluctuation 
intensity as a function of time (see figure 66).  At the early stage of the diffusion, 
intermittency is large because of the presence of the cloud a t  the detector. At this 
stage, fluctuations inside the cloud are small and therefore the fluctuation intensity 
is very small. Later the behaviour of the fluctuation intensity depends on the source 
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FIG~JRE 4. The standard deviation of a plume diffused in a homogeneous turbulent field as a 
function of time for a line source 1 = 4 x 10-4L: -, theoretical value (equation ( 7 . 2 ) ) ;  0, results 
of our simulation. 

0 1 .o 2.0 3.0 4.0 

TI TL 

FIGURE 5. Time dependence of averaged concentration normalized by total amount of 
contaminant, a t  the source axis, for a line source with 1 = 2 x JO-2L:  -, theoretical estimates 
(equation ( 7 . 3 ) ) ;  0, results of the simulations. 
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FIGURE 6. (a )  Time dependence of intermittency at  the source axis: 0-0. I = 4 x 10-4L; 0-0, 
1 = 2 x 10-2L. ( b )  Time dependence of fluctuation intensity S = uc/c at the source axis: -. 
1 = d x ~ o - ~ L ;  0-0, line source I = 2 x iO-'L. 

size. For very small sources, the 'in-plume fluctuations ' are substantial but the 
meandering motion of the cloud is very strong: therefore the fluctuation increases. 
As the intermittency increases, the fluctuation intensity decreases and tends to its 
asymptotic value. For larger sources, the time when the meandering motion 
dominates is very short, and the concentration fluctuation intensity increases to  its 
asymptotic value almost monotonically. 
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7.2. The concentration distribution fmct ion  
For each point and each time the concentration probability distribution function 
can be calculated. This distribution depends on time, location and initial source size. 
It is assumed that the non-zero part of the fluctuation distribution can be described 
by a probability density distribution function $o(C). Then the probability density 
function $(C) depends on the intermittency y : 

= Y$o(C) + (1  -74 W), (7.4) 

where &(C) is the Dirac &-function. If we denote by P(C)  the probability that the 
concentration a t  a point exceeds the value C, we get 

P(C) = YPO(C), (7.5) 

where P,(C) = $,(C")dC' s: 
If we assume that the distribution function $o(C) is a function of C/Co, where 

C, = lom $,(C') C'dC', (7.6) 

we get from (7.4) and (7.6) that  P ( C ) / y  is a function of -yC/G.-f 
Figure 7 is a plot of P ( C ) / y  as a function of yC/C. This graph shows that this 

scaling is good for all times. On each plot we draw the distribution a t  three distances 
in the cross-wind direction : at Z = 0, 0 . 7 5 ~ ~  and 1 . 5 ~ ~ .  The three distributions fall 
approximately on the same curve. 

t The above scaling of $,(C) is typical of several distribution functions, like exponential, log- 
normal. Weibull and others. 
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FIGURE 7 .  The probability of exceeding the concentration value of C normalized by the 
intermittency y ,  as a function of scaled concentration (yC/C) for the following times t :  (a )  3TL; 
( 6 )  TL; (c) 0.5TL and 2-values: 0, 0;  0, 0 . 7 5 ~ ~ ;  0,  i.5gz. 
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FIGI.RE 8. Fluctuation intensity as a function of time calrulated by the reversed-diffusion process. 
Source size 1/L, = 0.1. 

8. Discussion 
The model described in this paper is one-dimensional; therefore, like all one- 

dimensional models (Durbin 1980 ; Sawford 1985), it describes compressible flow. As 
was noted by Egbert & Baker (1984), the concentration fluctuations calculated using 
the forward-diffusion formalism include a contribution from the density fluctuations 
in the compressible flow ; the density fluctuation cannot be isolated and affects the 
results. Concentration fluctuations can also be calculated using the reversed-diffusion 
formalism (see Sawford & Hunt 1986; Durbin 1980). The concept of reversed 
diffusion was introduced by Corrsin (1952) to solve for the initial positions of a pair 
of particles which are both at  point Z at  time t .  In  this formalism, the statistics of 
C / p  are calculated (C is the absolute concentration and p the fluid density). In order 
to compare our results to the results of Durbin, we used the concept of reversed 
diffusion and (4.6) and (4.8) to calculate the fluctuation intensity. Results are 
described in figure 8. We found that the behaviour of the fluctuation intensity as a 
function of time is similar to that described by Durbin (1980). It should be 
emphasized that the fluctuations calculated by the reversed-diffusion process are 
related to the mass-specific concentration (the ratio between the number of 
contaminant particles and the number of fluid particles a t  a givcn volume) and not 
the usual definition of contaminant mass per unit volume. 

Another point that should be considered is the compatibility of our model with the 
‘well-mixed ’ principle analysed by Thomson (1986). This principle claims that if a 
tracer is well mixed in the flow, then the density function of the distribution in phase 
space (2, I/) of the tracer particles must be equal to that of the fluid, and therefore 
unchanged with time. It can be shown that when our model is extended to higher 
dimensions (Kaplan & Dinar 1986a, b ) ,  the model reaches the steady-state solution. 
On the other hand, the steady-state solution cannot be imposed on a one-dimensional 
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FIGURE 9. The averaged variance of the relative distance of particle pairs as a function oft .  The 

standard dependence ( A 2 )  = 0(t3) is shown. 

model (see Kaplan & Dinar 1986b). Owing to these two limitations of the one- 
dimensional model, our approach to the statistics of concentration fluctuation should 
be extended to higher dimensions. Extension to two-dimensions is given in Kaplan 
& Dinar (1986b). 

We also checked our model by calculating the behaviour of ( ( Z , - Z , ) 2 )  a t  small 
time. Equation (4.6) was solved by numerical simulation. The initial particle 
separation was zero and the structure function was 

S(d) = l-R(d).  (8.1) 

R ( d )  given in (8.1) was replaced by R(d,,)  whenever d was less than A,,, = 1OU6L 
(similar to Thomson 1986). Results presented in figure 9 verify the standard 
dependence : ((2, -2,)’) = O(t3) a t  small t .  

9. Summary 
In this work, we describe a new approach to contaminant dispersion in a turbulent 

medium. The model is based on solving the Lagrangian trajectories of N ,  particles, 
taking into account their interaction. The turbulent velocity field a t  a given instant 
is a sum of many ‘eddies’ which are distributed randomly and uniformally in space. 
The velocity of each eddy depends on the third root of its size. In such a field, the 
relative velocity between points is a random variable which depends on the 
instantaneous separation between them. At a small separation, the relative velocity 
variance tends to zero as A; (where A is the relative separation). We have used the 
definition of concentration proposed by Durbin (198O), which includes smearing 
effects of molecular diffusion and instrumental averaging. Our model is able to 
predict the whole distribution of concentration. Intermittency a t  a fixed point is 
calculated as well and the results agree quantitatively with experimental behaviour. 
The concentration probability density function is found to be given by 



138 H .  Kaplan and N .  Dinar 

$(C) = y$,(Cy/C) + (1  - y )  6(C), where $, depends only on source size and not on 
the point of measurement. Results for the concentration fluctuation intensity are 
in agreement with Durbin’s model and with observed data. 

Our model is also able to  provide information about the dispersion rate of 
instantaneous sources, like expansion of the cloud relative to its centre of mass. This 
will be discussed in a separate paper. 

I n  order to use the model for quantitative predictions that can be compared with 
observations, the model must be extended to three dimensions and to include the 
case of inhomogeneous turbulent flow. I n  principle, extension to three dimensions is 
straightforward, but computer time may become prohibitive. On the other hand, 
extension to inhomogeneous turbulence is more difficult and requires further 
assumptions and approximations. 

Appendix A. Velocity correlation for one-sized eddies 
The integral on the right-hand side of (2.4) has the form 

@(a I 2 1  - 51) @(a 12, - 51) d5. 

It is easy to show that for a class of functions @ appropriate for describing velocity 
dependence on the eddy radius, it is true that 

1 
a F ( a  IAZl) ’ 

I =  

where AZ = 12, -2,I. 

as 1x1 + co, 
By a change of variables t = a(Z,-[) in (A l) ,  i t  can be shown that for \@(x)l-.O 

Appendix B. The correlation function 

J = (O(2,)  O(Z,)), then 
The correlation function is given by (O(2,)  O(2,))  divided by the variance. Let 

where 
1, xco, 
0, x20. 

H ( X )  = 

Using the transformation a = l / a  and results from Appendix A, we obtain 
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where A 2  = 2,-2, and 2 = $(Zz +Z,). Therefore 

2 L D  
J = -  a-~(a-A2/2)da 

T I,, 

where A = A Z / L .  Dividing by the variance which is obtained from (B 3) taking 
2, = Z,, i.e. A = 0, we get? 

R = 1-3Ai+2A for A < 1. (B 4) 

Appendix C. The relative velocity 
The relative velocity of two points Z,,Z, is given by V, = O ( Z , ) - Q ( Z , ) .  Since 

O(Zi) is a sum of many independent random variables, equally distributed, it follows 
by the central-limit theorem that V, is normally distributed with zero mean and 
variance given by 

( V ; )  = (O(2,) - 0(2,)2) = (0(2,)2) + (0(2,)2) - 2 ( 0 ( 2 , )  O(2,)) 

= ~ ~ ~ - ~ c T ~ R ( I Z , - - Z , J ) .  (C 1) 

Appendix D. The Eulerian lengthscale 
The Eulerian lengthscale is obtained by calculating 

L,  = LJ:  R(d)dA = L (1-3A:+2A)dA = L(1- !+2x; )  = 0.2L. (D 1) J: 
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